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Abstract—The pulsatile blood flows in solid blood vessels are investigated numerically in order to understand
some physiological phenomena in arteries. For the geometry of the blood vessels, one-point stenosed and periodically
stenosed blood vessels are considered. Taking advantage of axisymmetry in the problem, the stream function-vorticity
formulation is used for the governing equations of the fluid flows. All the computations are performed by using
the ADI scheme of the finite difference method on the numerically generated boundary-fitted orthogonal curvilinear
coordinate systems. The flow fields are found to be dramatically different depending on the Strouhal number. When
the Strouhal number is O(1) or larger, the flow field is quite dynamic in the sense that the vortices formed during
the previous period survive and exert residual stress on the blood vessel wall. On the other hand, when the Strouhal
number is as small as O(1072), the flow fields are found to be in the quasi-steady state. The computation results
suggest that the deterioration of endothelial cells may occur due to strong local flow fields near the stenosis and
that the probability of platelet attachment to the blood vessel wall is higher in the region behind the stenosis. From
the results for the periodically stenosed vessel, the so-called steady streaming phenomenon is confirmed. The steady
streaming effect in a wavy channel is expected to increase the heat and mass transfer rate without making the flow

turbulent.
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INTRODUCTION

The fluid mechanical study of blood flow in artery bears some
important aspects due to the engineering interests as well as the
feasible medical applications. In China, the concept of blood circu-
lation was stated very clearly in one of the oldest books on medi-
cine, the Nei Jing, or “Internal Classic.” With this knowledge,
Chinese could diagnose diseases by taking pulses at a wrist where
the radial artery passes close to the surface. Chinese already knew
empirically that the abnormal waves are associated with diseases.
However, the rational explanations about the diagnostic method
have been lacked.

The clinical diagnoses of diseases by measuring the abnormal
blood pressure waves have been practiced from ancient times
without reasonable explanations. However, in view of the recent
advancement of fluid mechanics, it would be wonderful if the
“empirical practice” could be transformed to the “scientific medi-
cine.” One possible scenario is to record the pulse patterns by
using the instruments along with the analyses based on the ad-
vanced mathematical modelling. By comparing the results of phy-
siological experiments with the theoretical predictions, the pulse
patterns may be correlated with the types of diseases in a rational
way. Although the transformation to the scientific medicine cannot
be achieved in the near future, this general direction sheds a
light on the possible contribution of fluid mechanists to the medi-
cine area.

Because many cardiovascular disorders are closely associated
with the flow conditions in the blood vessel, the characteristics
of blood flow in arteries have received much attention. The flow
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patterns in an arterial segment, or in a model of the segment,
have mainly been determined experimentally. Another approach
to the problem of calculating flow characteristics in blood vessels
is possible by using numerical methods. The computer simulation
of blood flows in the models of vessel segments yields good re-
sults and provides useful information on the flow patterns. The
objective of this work is also to understand the physical events
that take place in the aortic blood vessel by using the numerical
methods and thereby to contribute to improvement of the physio-
logical understanding.

Previous works on the blood flows in arteries can be roughly
classified into two categories: one is for the arterial section with-
out bifurcation and the other for the section near the branching
point. Several important issues are well explained in reference
books [Pedley, 1980; Patel and Vaishnav, 1980; Fung, 1984]. The
present work belongs to the former category. The analyses for
the arterial section without bifurcation aim mainly at better under-
standing of the flow field change due to the stenosis developed
on the aterial wall and/or the pressure wave pattern due to the
blood flow in an elastic blood vessel. Daly [1976] analyzed the
pulsatile flow through stenosed canine femoral arteries by using
the numerical scheme of the Arbitrary Lagrangian Eulerian (ALE)
procedure. His results suggested that the time averaged peak
wall shear may be sufficiently large, when the areal restriction
is 61%, to result in the development of atheromatous lesions and
endothelial damage proximal to the stenosis. A similar problem
of pulsatile flow in a constricted 2-d channel was studied by Tutty
[1992]. Due to the physiological significance, the pressure wave
pattern in an elastic blood vessel has been studied by many resea-
rchers [Womesley, 1955; Ling and Atabek, 1972; Wu et al,, 1984;
Dutta et al, 1992; Ma et al, 1992]. One of the prominent works
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in this area was done by Ling and Atabek [1972]. They took
account of the nonlinear terms of the Navier-Stokes equations
as well as the nonlinear behavior of the arterial wall. Recently,
the research trend in this field has directed toward the numerical
analysis of the flow of a Newtonian fluid in an elastic tube when
the fluid is subjected to an oscillatory pressure gradient [Wu et
al, 1984; Dutta et al,, 1992; Ma et al, 1992]. However, the effect
of stenosis on the pressure wave pattern has not been considered
yet.

One commonly encountered phenomenon in studying the pul-
satile flow in a solid or an elastic wavy vessel is the so-called
steady streaming effect. Briefly speaking, the steady streaming
effect refers to a kind of flow (usually circulating vortex) existing
inside the vessel until the inertial force of the imposed flow ex-
ceeds the power of the vortex. Wang and Tarbell [1992] studied
the steady streaming effect inside the elastic tube and discussed
the possible applications to physiological flows. Kaneko and Honji
[1979] studied the steady streaming induced by oscillatory vis-
cous flow of small amplitude over a fixed wavy wall. However,
the most thorough analysis on the steady streaming effect was
done by Sobey [1980, 1983]. He presented numerical solutions
of the time-dependent two dimensional Navier-Stokes equation
insjde the physical domain of furrowed channel with a detailed
explanation on the mechanism. On application side, those re-
searches have mainly aimed at the development of biomedical
engineering equipments owing to the merit in improving the heat
or mass transfer by using the non-turbulent unsteady flows.

The purpose of this study is to simulate the physiological phe-
nomena that occur in the stenosed aorta and femoral arteries
which are 0.5-2 cm of diameter without bifurcation. As a first
step to achieve the goal, we consider the solid blood vessel case
for simplicity and take two types of physical models in this work.
One is the one-point deep stenosed blood vessel which is in the
normal state in the remaining part, and the other is a periodically
stenosed wavy vessel.

At this initial stage, the present work is quite similar to the
previous works [Daly, 1976; Sobey 1980]. There are, however,
several new aspects in addition to the detailed geometrical dif-
ferences. The first major difference is in the numerical scheme.
The boundary-fitted-orthogonal grid systems are used in our
study while the non-orthogonal grid systems have been adopted
in the previous works. Owing to the advantages in simplicity and
convergence, our analysis on the fixed blood vessel problem can
be easily extended to the moving elastic vessel problem. The
other point is that a much wider range of the Strouhal number,
which is the ratio of the unsteady acceleration to the steady ac-
celeration, is considered in this work to see the effect of unsteadi-
ness of the flow.

In the following section, we briefly summarize the characteris-
tics of the blood flows in artery before starting the analysis.

BLOOD FLOWS IN ARTERY

With each contraction the left ventricle ejects a volume of blood
into the aorta and thence on into the arterial bed. A pressure
wave moves rapidly through the arterial system where it can be
felt as the arterial pulse. Blood pressure in the arterial system
varies with the cardiac cycle, reaching a systolic peak and a dias-
tolic trough, the levels of which are measured by sphygmomano-
meter. The difference between systolic and diastolic pressures
is known as the pulse pressure.

As mentioned earlier, analysis of the pulsatile blood flows is
important in engineering applications as well as in medical appli-
cations. But the exact solution to this problem has not been avail-
able so far. This is mainly due to the complex physiological situa-
tions in the artery. The reason why the problem is so complicated
may well be understood by examining the real situations of blood
flow in arteries.

- First, the blood is a non-Newtonian fluid. The constitutive
equation of blood is more complicated compared with that of the
Newtonian fluid. As a result, highly nonlinear form is produced
in the final equations for the blood flow.

- Second, the blood vessel is an elastic tube rather than a static
fixed pipe. The wall of the blood vessel, which is the boundary
of the domain where the problem is stated, fluctuates as time
goes on. In mathematics, the moving boundary problems are much
more difficult to be treated compared with the fixed boundary
problems.

- Third, the blood flow is pulsatile. Thus the oscillatory behav-
ior of the blood flow in an elastic arterial vessel must be consid-
ered.

- Fourth, the blood flow in the vessel is a combination of tur-
bulent and laminar flows. In medium- and small-sized vessels
the flow is laminar, but in a comparatively large-sized vessel, tur-
bulent flow is observed in some cases.

- Fifth, the straight segments are short in human arterial sys-
tem. So only the developing flows exist.

- Sixth, the arterial system has almost infinitely many branches
and there exist hi-, tri-, and multi-furcations in the blood vessel.

If we considered all of these in one setting of the mathematical
modelling, the final system of equations would be highly nonlinear
and extremely coupled. The problem may be too difficult to be
solved even with the most high-powered computers. Thus, in this
paper, we simplify the situation as much as possible to make the
problem tractable without losing the essence.

METHOD OF ANALYSIS

1. Equations of Motion of the Blood Flow

The physical models and the coordinate systems are shown
in Fig. 1. As mentioned in Introduction, only the cases of static
fixed blood vessels are considered in this paper. The equations
which govern the axisymmetric pulsatile flow are the continuity
and the Navier-Stokes equations. The followings are assumed to
simplify the governing equations:

- The blood is a homogeneous incompressible Newtonian
fluid.

- The density and the viscosity of the fluid are constant.

- The flow is laminar,

The following characteristic scales are adopted to non-dimen-
sionalize the governing equations

U= Upmar, tr:%, p.=pu’ =R, and Vr=~l];—
where, U, is the time-averaged velocity at the center of the en-
trance plane of the vessel, R the radius of the vessel at the en-
trance point, and ) the oscillatory frequency of the imposed pul-
satile flow times 2n. Then the dimensionless governing equations
become

V-u=0, (1)
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In (2), two important dimensionless numbers appear. The Strouhal
number, St=€./u, is the ratio of unsteady acceleration to the
steady acceleration and is the measure of the unsteadiness of
the flow. The Reynolds number, Re=ul/v, is the ratio of the
inertial force to the viscous force. In some literatures, these two
dimensionless parameters are combined to form the pulsatile
Reynolds number, a?=ReSt(=12Q/v), which stands for the de-
gree of oscillation of the flow inside the blood vessel. In arteries,
the value of the Reynolds number ranges from O(10?) to O(10°)
and that of the Strouhal number from (1072 to O(10 ). In the
present study, the values of Re=100, 250, and St=0.01, 0.5, 1.0
are used.
2. Stream Function-Vorticity Formulation

In this work we adopt the stream function-vorticity formulation
by taking advantage of axisymmetry in the problem. The vorticity
equation is

0w _ -1
Stat VX {(uXw)= Re Vi 3

where @ is the vorticity vector defined by
0=9Xu 4)

Since we deal with the axisymmetric blood flows without swirl-
ing in arteries, only the e;-directional vorticity component re-
mains, ie.

= (03€3.

Now, we have to transform Egs. (3) and (4) into the form appro-
priate to the axisymmetric general orthogonal coordinate system.
In an orthogonal £—n— ¢-coordinate system, the differential dis-
placement vector is represented as

dx= hldélel + hzdézez + h3d§3€3
= h{d§e£+ hndnen + hodMo

where h;, h,, and h, are the scale factors in the directions of
& 1, and ¢, respertively. In axisymmetric problems, hy:=r holds,
and we define the stream function as

1 9% _ 1 a¥
s Un=
hshe g W, g’

to satisfy the continuity equation automatically. Since only the
vorticity component «; remains, we set @ =ws. Then the govern-

W=
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Table 1. Coefficients of the governing equations
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ing equations for the vorticity @ and the stream function ¥ are
obtained from Eq. (3) and the definition of the vorticity equation
[Eq. @)). The resulting equations are

582 ho j_(3)+_hg 9 (w)

Uy~

PR h, " gn \he
g v o i el B
ol ) o (G o)l ®

where f is the distortion function defined by f=h,/h; (see Batche-
lor [1967]).
The above equations are rearranged into the following form
oW _ W _ W W
Yot T e Ty
where W represents o or ¥. The appropriate coefficients qq, q,,
Qs g3 qs are written in Table 1. We use the ADI (Alternating
Direction Implicit) method to obtain the numerical solution of
the above governing equations. To solve the equations by ADI
method, we use the ceniral difference approximation for the spa-
tial derivatives. We then obtain the difference equations for the
vorticity

oW
+ qZ v + W+ q,, D

*__ N 7. 2 *® (3
o oat_ 8wt Bar, aB0% a8t

+q"w*+q  (8)

Pza T se T oy 8 &
(0"”‘“0.). 820)0 62 n+1 * 8(!)'”1
w1 el + .
W par e T ep TV e T¥ 5
+g'e" gl @

where At is the time step used in ADI scheme.

The same scheme does not work for the stream function equa-
tion because qo is zero. In other words, the stream function equa-
tion does not have the time derivative term. Therefore the stream
function equation should be satisfied at any time and the discre-
tized version of stream function equation
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Fig. 2. Flow diagram for the numerical scheme.

F%"—'}' 882:;“ +Q1%+QZ%+qg‘l’”+q3"=0 (10)
should be satisfied for all t=nAt (n=0,1,2,3,---). As we can see
in Table 1, qs= —wh,’h, for the stream function equation. Thus,
for each time-step, we should solve (10) for the given q,"= — w"h,?
h,, which is obtained from the n-th time-step value of the vorticity.
Eq. (10) can be solved in various ways. But an easy way is to
transform (10) into the fictitious time-dependent problem and
adopt ADI method to obtain the converged solution

\l,v+ 12 — 82\Pv+ 12 82\1,\' 8\{,v+ 12 8\[1v
= + + +Qqp—=—
1/2c A TR
+q3‘l’v+1/2+ q4" (11)
\yvn_‘\yvﬂlz Fszq,vﬂ/z 82‘}"” s\l,v+1/2 Y 228!
Vr | &8 s 0T ¥
+o ¥+l 12

where v is the iteration number. In (11) and (12), the fictitious
time-step size t plays a role of iteration parameter and is of O
(1072 in the present study. In the present work, the convergence
criterion for the stream function equation is

max| ¥} — ¥}, max|¥};' ¥} <107

Thus, the maximum residual of (10) is O(1077).
The overall solution algorithm is presented in Fig. 2. As we
can see in the figure, for each time step increase, i.e. from t=t
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Fig. 3. The velocity profiles of the flow imposed at the tube inlet (re-
sults of Eq. (13); reference [19]).

to t=t+At, ©"*! is simply obtained by (8) and (9) for the given
w". Once ®"*! is obtained, the stream function equation is solved
iteratively until the fully converged solution ¥"*' corresponding
to ®""! is obtained.

For the boundary conditions, we have considered the following
facts. At the solid surface (9€), no slip condition holds. At the
inlet (3€22), the pulsatile velocity profile is imposed. The unsteady
pulsatile velocity profile imposed at the vessel inlet is given in
the next subsection. The symmetry condition at the center line
(92 is due to the axisymmetry of the flow in the channel. For
the outlet (9€24), we have assumed g/9z=0 for the one-point ste-
nosed tube, and that all variables at the outlet plane are the same
as those at the plane one-period ahead of the end point for the
periodically wavy blood vessel.

3. Pulsatile Flow at the Vessel Inlet

In the present work, we want to investigate the effects of St
and Re on the flow fields in the one-point stenosed and the perio-
dically stenosed blood vessels when a specific pulsatile flow is
imposed at the inlet. For the pulsatile flow specified at the inlet,
we have used the velocity components given by

u,=[(1+e sin t)(l—rz)-eu{(%—rz-kg-)cos t]; u,=0 (13)

with a?=37.75 and £=0.2 in all computations. The pulsatile veloc-
ity profiles predicted by (13) with the parameter values are shown
in Fig. 3. Although the expression is simple, the resulting velocity
profiles have some essential features of the pulsatile blood flow
in arteries. Particularly, the back flow for a short time interval
is noteworthy.

Here, a comment should be given to the velocity field in (13).
Originally, the expression in (13) was obtained as an asymptotic
form of the solution of the problem of uni-directional flow in a
circular tube with constant radius produced by the time-periodic
pressure gradient

— 9P _Gy(1+esint). (14)
07

The solution to the problem is given by a complicated expression
including the Bessel functions. The asymptotic form of the solu-
tion for the case of aZ=ReSt«1 is in fact given in dimensionless
form as (see Leal [19])

r

u,=[(1+esint)(l—rz)—e—(z—z(%—rz-i——i—)cost+0(a‘)]. (15)
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Fig. 4. Orthogonal grid systems inside the blood vessels.
(a) one-point stenosed blood vessel type
{(b) periodically stenosed blood vessel type

The typical value of @* was found to be 37.75 from the physiologi-
cal data available in references [Dinnar, 1981; Flaherty et al.,
1972]. Of course, the asymptotic form in (15) is not a good appro-
ximation to the solution of uni-directional flow in a constant radius
tube due to time-periodic pressure gradient for such a large value
of a? as 37.75. In the present work, however, we do not intend
to use the solution of the problem of uni-directional pulsatile flow
in a tube as our inlet condition. Instead, we want to use the expres-
sion of a specific pulsatile flow which has some essential features
of the pulsatile blood flow in arteries. As mentioned earlier, the
expression in (13) with 02=37.75 and £€=0.2 has several nice fea-
tures even though it does not have meaning as an asymptotic
solution to the problem of uni-directional pulsatile flow in a con-
stant radius tube. Thus, we have used the velocity field in (13)
as the inlet condition in all computations.
4. Orthogonal Grid Generation

In order to solve the problem numerically, we first have to
generate a good grid system for the given domain. Qur numerical
scheme is based on the numerically generated boundary-fitted
orthogonal curvilinear coordinate system. In this paper, the me-
thod of Oh and Kang [1994] is adopted. Oh and Kang’s method
is a newly developed numerical scheme for generating an ortho-
gonal grid in a simply-connected 2D domain. Their method is
non-iterative and flexible in the adjustment of grid spacing. The
grid spacing can be controlled mainly by specification of the boun-
dary correspondence up to on three sides of the boundary.

We generated the orthogonal grid systems for the one-point
stenosed vessel as well as the periodically stenosed blood vessel.
The results are presented in Fig. 4. The equation for the top
side boundary (g{),) is given as

y=1+0.25[cos{n(x—1.5)} —1] 0.75<x<15
y=1 0<x<0.75, 1.5<x<8

for the one-point stenosed blood vessel and
y=0.8+0.2 cos(nx) 0<x<4

for the periodically stenosed blood vessel. The grid systems were
obtained by specifying the boundary correspondence on three
sides as (x=¢&, y=given function for each geometry) on g&, (x=
0, y=1n) on 9QY;, and x=¢§ y=0) on g

RESULTS AND DISCUSSIONS

1. One-point Stenosed Blood Vessel
We have solved the equations for both the stream function and
the vorticity for the one-point stenosed solid blood vessel. For
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Fig. 5. Streamlines in the one-point stenosed biood vessel for the case
of Re=250, St=1.
@ t=n/2; (b) t=m (© t=3n/2; d) t=2m; (&) t=2n+n/2;
B t=2n+n; (@ t=2n+3n/2; (h) t=4n.

the initial condition, it is assumed that there is no flow initially
inside the vessel. As already described in Fig. 1, the physical
mode! of the blood vessel is 75% stenosed on the basis of the
cross sectional area. The pulsatile flow imposed at the inlet is
accelerated in the forward direction for the time interval 0<t<m,
but the flow is decelerated for n<t<2n. The acceleration and
deceleration are repeated as shown earlier in Fig. 3.

For the case of Re=250, St=1, the snapshots of streamline
distribution inside the blood vessel are shown for several time
steps in Fig. 5. At t=n/2, the vortex seed is formed at the post-
stenosed part of the blood vessel. As time goes on, the size of
the vortex grows larger and moves downward to the end of the
blood vessel. At t=n, the acceleration phase ends. Although the
inlet flow is decelerated after t=n, the vortex formed during the
acceleration period does not disappear and moves to the down-
stream of the flow. At t=2n, one period of flow oscillation at
the vessel inlet is completed. During the next period, the vortex
formed during the first period survives and moves to the down-
stream. The vortices affect the vessel surface in the form of resid-
ual shear stress. The flow fields in the next period near the
stenosis are quite similar to those of the previous period.

We have plotted the dimensionless wall vorticity as function
of z in Fig. 6. As the dimensionless wall vorticity is directly related
to the dimensional shear stress by T= — (uu/l)», we can estimate
the shear stress distribution from the vorticity plot along the
blood vessel wall. The shear stress oscillates with a large ampli-
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Fig. 6. Distribution of dimensionless vorticity along the wall of the

one-point stenosed blood vessel (Re=250, St=1).
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Fig. 7. Dimensionless pressure distribution along the wall of the one-
point stenosed blood vessel (Re=250, St=1).

tude near the stenosis, and there also exists the residual shear
stress due to the vortex formed one-period ago. The dimension-
less pressure distribution along the vessel is presented in Fig.
7 (The computation of pressure along the wall has been perform-
ed by the method in Kang and Leal [1987]). The pressure dis-
tribution along the blood vessel wall oscillates as the imposed
flow at inlet is accelerated or decelerated.

In the case of Re=250, St=0.1, the flow characteristics are
quite different from those of the case of Re=250, St=1 as can
be seen from the streamlines in Fig. 8. As menticned earlier,
the Strouhal number is the measure of unsteadiness of the flow
field. In the case of Re=250, St=0.01, the flow field at each time
step is very similar to that of the steady state flow field that
would be obtained when the inlet condition is fixed with the im-
posed flow at that time. This is due to the small Strouhal number
under which the flow field behaves in a quasi-steady state man-
ner. This fact can also be verified from the governing equation
(2). Under this condition, a large vortex oscillates in the broad
range of the post stenotic region and for the most part of one
period there exists a large stagnation flow behind the stenosis.
The large stagnation flow has some physiological meaning. The
probability of attaching platelets to the surface of blood vessel
may be higher in the stagnant region of the blood vessel compared
with other vessel segment. If this physiological phenomenon hap-
pens, the arterial diseases of stenosis or atherosclerosis become
worse and serious damage to the vessel wall may occur. The
stenosis will progress further and consequently artificial arterial

(a) -

(b)

[g\f i
Fig. 8. Streamlines in the one-point stenosed blood vessel for the case
of Re=250, St=0.01.
(@) t=n/4; (b) t=n/2; (c) t=3n/4; (d) t=n; (e) t=5n/4; (D
t=3n/2; (g) t=7n/4; (h) t=2n.
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Fig. 9. Distribution of dimensionless vorticity along the wall of the
one-point stenosed blood vessel (Re=250, St=0.01).

segment must be prosthesed parallel to the diseased blood vessel
[Savvides and Gerrad, 1984].

Fig. 9 shows the distribution of the dimensionless shear stress
along the blood vassel wall. Large values of oscillatory shear
stress are exerted at the stenosed part of the vessel but there
does not exist any residual shear stress far away from the stenotic
point of the blood vessel. This is due to the fact that there is
no vortex present in that part of the blood vessel. If we look
at the pressure variation along the blood vessel shown in Fig.

Korean J. Ch. E.(Vol. 12, No. 5)
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Fig. 10. Dimensionless pressure distribution along the wall of the one-
point stenosed blood vessel (Re=250, St=0.01).

Table 2. Numerically calculated shear stress under various flow con-
ditions for each blood vessel type

Model Shear stress (dyne/cm?)
Normal blood vessel 23-—12 (Re=250, St=1)

One-point 270 -—105 (Re=250, St=1)
stenosed 270 -—82 (Re=250, St=0.5)
blood vessel 270 -—12 (Re=250, S5t=0.01)

70 -—14 (Re=100, St=1)
70 -—7 (Re=100, St=0.5)

Periodically 149 - 67 (Re=250, St=1)
stenosed 146 - —30 (Re=250, St=0.5)
blood vessel 146 -—21 (Re=250, St=0.01)

39-—9 (Re=100, St=1)
39-—4 (Re=100, 5t=0.5)

10, the profiles are nearly the same as that of steady state case
at each time. In other words, the profiles show the characteristics
of the quasi-steady state.

It is time to investigate the physiological effects of shear stress
on the endothelial cells of the blood vessels. As mentioned earlier,
the dimensional shear stress (x) can be computed by using the
numerical results of the dimensionless wall vorticity (w) by the
relation T= — (uu//)w. As an example, we consider a blood vessel
of diameter 1 cm (i.e. /. =radius=0.5 cm) and the viscosity of
the blood is assumed to be 3.5 cp (=0.035 g/cm/s). Then from
the definition of the Reynolds number u, is computed. In order
to see the effect of the stenosis, the numerical computations have
been performed for both the straight blood vessel and the 75%
stenosed vessel. For the straight normal blood vessel, the shear
stress ranges from 23 dyne/cm? to —12 dyne/cm? in the case
of Re=250, St=1. But for the model of this study, the shear
stress value is increased about ten times to the value 270 -—105
for the same condition and to the 70 -— 14 for the case of Re=100,
St=1. At the peak stenosis point the shear stress value oscillates
in the range 0-270 dyne/cm® for Re=250, St=1, and 0-70 for
Re=100, St=1. The numerical values for the other cases are
presented in Table 2. This amount of shear stress can cause phy-
sical damage to the arterial wall. Daly [1976] suggested that the
endothelial surface of the canine thoracic aorta exposed on the
time-averaged wall shear stress of 380 dyne/cm? (+ 85 dyne/cm?
standard deviation) for approximately 1 hr can be markedly dete-
riorated. Based on this data we can expect the physical damage
of the endothelial surface due to the flow field when there is
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Fig. 11. Streamlines in the one-point stenosed blood vessel for the
case of Re=250, St=0.5.
(a) t=n/4; (b) t=n/2; (c) t=3n/4; (d) t=n; (e) t=>5n/4; (f)
t=3n/2; (g) t=7n/4; (h) t=2n.
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Fig. 12 Distribution of dimensionless vorticity along the wall of the
one-point stenosed blood vessel (Re=250, St=0.5).

a deeply developed stenosis.

Now we discuss the effects of the Strouhal number on the flow
field characteristics. In the case of a high Strouhal number, un-
steadiness of the flow field is prominent. On the other hand, in
the low Strouhal number case, the nature of flow field is in a
more or less quasi-steady state. The flow with a high Strouhal
number of O(1) is dominated by the effect of unsteady accelera-
tion. In this case we have seen from numerical solutions that
vortices exist and move to downstream even for a deceleration
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phase. The inertial forces cannot erase all the vartices power in
the high Strouhal number cases. On the other hand, when the
Strouhal number is as small as O(137%), an almost quasi-steady
flow exists. Between these orders there is an intermediate Strou-
hal number at which the flow changes its characteristics from
a quasi-steady fashion to a dynamic fashion. In Figs. 11 and 12,
the results are shown for the case of St=0.5. The results are
almost the same as those of the St=1 case. Although results are
not given in this paper, the numerical solutions for St=0.1 case
show that the quasi-steady state nature dominates. In the case
of Re=100, the general behavior is almost the same as that of
the Re=250 case except that the inertial force is weaker com-
pared with the high Reynolds number case.

2. Periodically Stenosed Blood Vessel

The physical model adopted in this work was given earlier in
Fig. 1. The blood vessel is 60% periodically stenosed on the cross-
sectional area basis. It is a kind of wavy channel that was adopted
by Sobey {1980] or Nishimura [1989]. But the major difference
is that our model is rather longer, Sobey considered only one-
furrowed channel and Nishimura two-furrowed channel. Qur mod-
el is a four period furrowed channel. Sobey used the periodic
boundary conditions to solve the problem, but in our case, we
have solved the problem for the whole system by using the bound-
ary conditions discussed earlier.

For the case of Re=250, St=1, we have calculated the flow
field inside the wavy vessel as a function of time starting from
no flow situation. The streamlines at specified times are shown
in Fig. 13. As the flow is accelerated, the separation accurs inside
the furrowed channel. Initially the flow 1s subject to a pressure
gradient in the direction of the flow because of the acceleration.
This causes the {luid to stream through the channel without sepa-
ration. The channel geometry wil] impose a pressure gradient op-
posing the direction of flow in the region of increasing channel
width. The magnitude of this adverse pressure gradient will in-
creaseas the flow magnitude increases while the pressure gra-
dient driving the flow will decrease as the time of peak flow is
approached. Eventually the adverse pressure gradient will exceed
the pressure gradient driving the flow and shortly after this the
flow may separate. Once separation occurs, a vortex forms and
grows rapidly [Fig. 13(b)] and there may be a considerable region
of recirculating flow.

In the deceleration phase, the vortices behave in a remarkable
manner. In steady state flow, the vortices decrease in size as
the flow magnitude decreases. However, in the case of pulsatile
flow, the vortices expand and gradually bulge into the main
stream [Fig. 13(c)]. Even though the flux of fluid through the
channel vanishes, the vortices remain spinning in the fluid and
they effectively occupy the entire channel [Fig. 13(d)]. This behav-
ior is possible because, no matter how the Reynolds number
may be large, the continuity of stress of a viscous fluid ensures
that moving fluid entrains stationary fluid before the whale fluid
would come to rest.

To see the behavior of vortices more closely we took the snap-
shots with the time interval of n/4. In Fig. 13(e), we can see that
the size of vortex decreases when there is large inertial force
that exceeds the vortex power. As the inertial force increases
further all the vortices inside the fube are diminished and disap-
peared completely [Fig. 13(f)]. At the time of 2n+3n/4, the new
vortices are formed inside the furrow due to the adverse pressure
created by geometry [Fig. 13(g)]. As the flow is further acceler-
ated, the vortices grow up and move in the direction of flow inside

(d)
ST TOTOA
(e)

m

Fig. 13. Streamlines in the periodically stenosed blood vessel for the
case of Re=1250, St=1.
@ t=n/2; (b) t=m; () t=3n/2; (d) t==2n; (&) t=2n+n/4nm;
O t=2n+n/2; (g) t=2n+3r/4: (W) t=2n+n; () t=2n+5n/4;
Gy t=2n+3n/2; (k) t=2n+7n/4; (/) t=4n.

the furrow. In the deceleration phase of the inlet flow, the vortices
grow up in the direction of centerline of the tube. As the flow
is more decelerated, the vortices grow further and are about to
be ejected to the core of the tube [Fig. 13(j)]. After the vortex
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548 Y.Jeong and 1. S. Kang

150

100

50 -

Wall Vorticity
(-]
L

=50

0 1 2 3 4 S 6 7 8
z-Directional Coordinate
Fig. 14. Distribution of dimensionless vorticity along the wall of the
periodically stenosed blood vessel (Re=250, St=1).
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Fig. 15. Dimensionless pressure distribution along the wall of the pe-
riodically stenosed blood vessel (Re=250, St=1).

ejection occurs [Fig. 13(k)], the vortex is entrained at the core
region between the back flow near the wall surface [Fig. 13()].
This is the so-called vortex entrainment phenomenon. The pro-
cess of vortex ejection and entrainment occurs very rapidly at
the time of reversal fluid flux.

The process of vortex formation and ejection is a powerful sour-
ce of convective mixing. A quite striking feature of this flow field
is the growth of vortex size during the deceleration period. This
phenomenon of existing vortices inside the tube until the inertial
force exceeds the vortex power is due to the so-called steady
streaming effect. The steady streaming effect is clearly confirmed
in our numerical studies. This topic is worthy of further study
since some sophisticated equipments for enhancing the heat and
mass transport may be designed by taking advantage of the phe-
nomenon mentioned above [Dragon and Grotberg, 1991].

The wall vorticity along the blood vessel is presented in Fig.
14. Large oscillatory shear stresses are exerted to the wall surface
near the stenosed point of the blood vessel. In Fig. 15, the pres-
sure variation along the vessel wall is presented. The pressure
at the wall changes periodically according to the oscillating flow
at the inlet.

For the case of Re=250, St=0.01, the flow fields at various
times are presented in Fig. 16, and the wall vorticity along the
blood vessel in Fig. 17. As we can see in the figures, the flow
fields are nearly the same as the corresponding steady state solu-
tions. Inside the channel, stagnation flow region is formed. Based
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Fig. 16. Streamlines in the periodically stenosed blood vessel for the
case of Re=250, St=0.01.
(@) t=n/4; (b) t=n/2; (c) t=3n/4; (d) t=n; (e) t=5n/4; (f)
t=3n/2; (g) t=7n/4; (h) t=2n.

on these results we can infer that the arterial disease becomes
worse once there exists a periodic stenesis along the blood vessel
because platelet attachment progresses on the vessel segment
between the stenosis points.

Let us now see the increment of shear stress when there is
a 64% stenosis compared to that of normal straight arterial seg-
ment. As we can see in Table 2, the numerical value of shear
stress is increased about 7 times for the 64% periodically formed
stenosis. This amount of shear stress may deteriorate the endo-
thelial surface as we can see in Daly [1976].

In the Strouhal number range of 0(107"), the flow field shows
somewhat intermediate behavior between the dynamic and the
quasi-steady states as shown in Figs. 18 and 19. As the Strouhal
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Fig. 17. Distribution of dimensionless vorticity along the wall of the
periodically stenosed blood vessel (Re=250, St=0.01).
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Fig. 18. Streamlines in the periodically stenosed blood vessel for the
case of Re=250, St=0.5.
(a) t=n/4; (b) t=n/2; (c) t=3n/4; (d) t=m; (e} t=5n/4; (f)
t=23n/2; (g) t=7n/4; (h) t=2n.
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Fig. 19. Distribution of dimensionless vorticity along the wall of the
periodically stenosed blood vessel (Re=-250, St=0.5).

number is closer to O(1) the unsteady acceleration effect domi-
nates the flow fields, and below the order of O(107") the flow
shows the quasi-steady behavior.

CONCLUSIONS

In this work, several physiological phenomena due to the pulsa-
tile blood flow in fixed but stenosed blood vessels have been
studied numerically. The numerical scheme used is the finite dif-
ference method with orthogonal grid generation. For convergence
scheme of the numerical solutions, ADI scheme has been used.
Several important results of the unsteady flow fields inside the
blood vessel have been obtained. Based on the results, we expect
that the pulsatile blood flow has the following physiological effects
in the blood vessel proximal to the stenosis.

- High shear stress is exerted on the blood vessel wall near

‘the stenosed point due to the fast flow, and serious physical dam-

age may occur due to the exerted high shear stress.

- When the Strouhal number is small, there exists a large recir-
culating flow after the stenosis. The size of the circulating flow
oscillates as the imposed flow at the inlet oscillates. The proba-
bility of platelet attachment is expected to be higher in the circu-
lating flow region than at other part of the blood vessel.

+ When the Strouhal number is O(0.5) or higher, the residual
shear stress due to the vortex remained in the post-stenotic re-
gion of the blood vessel affects the vessel wall in the form of
physical stress.

Another aspect we have confirmed is the steady streaming ef-
fect inside the wavy vessel when there is a pulsatile blood flow
at the tube inlet. The process of vortex formation—>movement
—>growth—>ejection—>entrainment is thought to be a powerful
source of convective mixing inside the tube without making the
flow turbulent. This is an effective way of increasing the heat
and mass transfer rate inside the tube. This mechanism may also
be applied to enhance the mass transfer rate in some crucial parts
of artificial kidney and heart systems.
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