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A b s t r a c t - T h e  pulsatile blood flows in solid blood vessels are investigated numerically in order to understand 
some physiological phenomena in arteries. For the geometry of the blood vessels, one-point stenosed and periodically 
stenosed blood vessels are considered. Taking advantage of axisymmetry in the problem, the stream function-vorticity 
formulation is used for the governing equations of the fluid flows. All the computations are performed by using 
the ADI scheme of the finite difference method on the numerically generated boundary-fitted orthogonal curvilinear 
coordinate systems. The flow fields are found to be dramatically different depending on the Strouhal number. When 
the Strouhal number is O(1) or larger, the flow field is quite dynamic in the sense that the vortices formed during 
the previous period survive and exert residual stress on the blood vessel wall. On the other hand, when the Strouhal 
number is as small as O(10-z), the flow fields are found to be in the quasi-steady state. The computation results 
suggest that the deterioration of endothelial cells may occur due to strong local flow fields near the stenosis and 
that the probability of platelet attachment to the blood vessel wall is higher in the region behind the stenosis. From 
the results for the periodically stenosed vessel, the so-called steady streaming phenomenon is confirmed. The steady 
streaming effect in a wavy channel is expected to increase the heat and mass transfer rate without making the flow 
turhulent. 
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INTRODUCTION 

The fluid mechanical study of blood flow in artery bears some 
important aspects due to the engineering interests as well as the 
feasible medical applications. In China, the concept of blood circu- 
lation was stated very clearly in one of the oldest books on medi- 
cine, the Nei Jing, or "Internal Classic." With this knowledge, 
Chinese could diagnose diseases by taking pulses at a wrist where 
the radial artery passes close to the surface. Chinese already knew 
empirically that the abnormal waves are associated with diseases. 
However, the rational explanations about the diagnostic method 
have been lacked. 

The clinical diagnoses of diseases by measuring the abnormal 
blood pressure waves have been practiced from ancient times 
without reasonable explanations. However, in view of the recent 
advancement of fluid mechanics, it would be wonderful if the 
"empirical practice" could be transformed to the "scientific medi- 
cine." One possible scenario is to record the pulse patterns by 
using the instruments along with the analyses based on the ad- 
vanced mathematical modelling. By comparing the results of phy- 
siological experiments with the theoretical predictions, the pulse 
patterns may be correlated with the types of diseases in a rational 
way. Although the transformation to the scientific medicine cannot 
be achieved in the near future, this general direction sheds a 
light on the possible contribution of fluid mechanists to the medi- 
cine area. 

Because many cardiovascular disorders are closely associated 
with the flow o3nditions in the blood vessel, the characteristics 
of blood flow in arteries have received much attention. The flow 
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patterns in an arterial segment, or in a model of the segment, 
have mainly been determined experimentally. Another approach 
to the problem of calculating flow characteristics in blood vessels 
is possible by using numerical methods. The computer simulation 
of blood flows in the models of vessel segments yields good re- 
sults and provides useful information on the flow patterns. The 
objective of this work is also to understand the physical events 
that take place in the aortic blood vessel by using the numerical 
methods and thereby to contribute to improvement of the physio- 
logical understanding. 

Previous works on the blood flows in arteries can be roughly 
classified into two categories: one is for the arterial section with- 
out bifurcation and the other for the section near the branching 
point. Several important issues are well explained in reference 
books [-Pedley, 1980; Patel and Vaishnav, 1980; Fung, 1984]. The 
present work belongs to the former category. The analyses for 
the arterial section without bifurcation aim mainly at better under- 
standing of the flow field change due to the stenosis developed 
on the aterial wall and/or the pressure wave pattern due to the 
blood flow in an elastic blood vessel. Daly 1-1976"] analyzed the 
pulsatile flow through stenosed canine femoral arteries by using 
the numerical scheme of the Arbitrary Lagrangian Eulerian (ALE) 
procedure. His results suggested that the time averaged peak 
wall shear may be sufficiently large, when the areal restriction 
is 61%, to result in the development of atheromatous lesions and 
endothelial damage proximal to the stenosis. A similar problem 
of pulsatile flow in a constricted 2-d channel was studied by Tutty 
1-1992]. Due to the physiological significance, the pressure wave 
pattern in an elastic blood vessel has been studied by many resea- 
rchers I-Womesley, 1955; Ling and Atabek, 1972; Wu et al., 1984; 
Dutta et al., 1992; Ma et al., 1992]. One of the prominent works 
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in this area was done by Ling and Atabek [1972]. They took: 
account of the nonlinear terms of the Navier-Stokes equations 
as well as the nonlinear behavior of the arterial wall. Recently, 
the research trend in this field has directed toward the numerical 
analysis of the flow of a Newtonian fluid in an elastic tube when 
the fluid is subjected to an oscillatory pressure gradient rWu el: 
al., 1984; Dutta et al., 1992; Ma et aL 1992]. However, the effect 
of stenosis on the pressure wave pattern has not been considered 
yet. 

One commonly encountered phenomenon in studying the pul- 
satile flow in a solid or an elastic wavy vessel is the so-called 
steady streaming effect. Briefly speaking, the steady streaming 
effect refers to a kind of flow (usually circulating vortex) existing 
inside the vessel until the inertial force of the imposed flow ex- 
ceeds the power of the vortex. Wang and Tarbell [1992] studied 
the steady streaming effect inside the elastic tube and discussod 
the possible applications to physiological flows. Kaneko and Honji 
[1979] studied the steady streaming induced by oscillatory vis- 
cous flow of small amplitude over a fixed wavy wall. However, 
the most thorough analysis on the steady streaming effect was 
done by Sobey [1980, 1983]. He presented numerical solutions 
of the time-dependent two dimensional Navier-Stokes equation 
inside the physical domain of furrowed channel with a detailed 
explanation on the mechanism. On application side, those re- 
searches have mainly aimed at the development of biomedical 
engineering equipments owing to the merit in improving the heat 
or mass transfer by using the non-turbulent unsteady flows. 

The purpose of this study is to simulate the physiological phe- 
nomena that occur in the stenosed aorta and femoral arteries 
which are 0.5-2 cm of diameter without bifurcation. As a first 
step to achieve the goal, we consider the solid blood vessel case 
for simplicity and take two types of physical models in this work. 
One is the one-point deep stenosed blood vessel which is in the 
normal state in the remaining part, and the other is a periodically 
stenosed wavy vessel. 

At this initial stage, the present work is quite similar to the 
previous works EDaly, 1976; Sobey 1980]. There are, however, 
several new aspects in addition to the detailed geometrical dif- 
ferences. The first major difference is in the numerical scheme. 
The boundary-fitted-orthogonal grid systems are used in our 
study while the non-orthogonal grid systems have been adopted 
in the previous works. Owing to the advantages in simplicity and 
convergence, our analysis on the fixed blood vessel problem can 
be easily extended to the moving elastic vessel problem. The 
other point is that a much wider range of the Strouhal number, 
which is the ratio of the unsteady acceleration to the steady ac- 
celeration, is considered in this work to see the effect of unsteadi- 
ness of the flow. 

In the following section, we briefly summarize the characteri:s- 
tics of the blood flows in artery before starting the analysis. 

BLOOD F L O W S  IN A R T E R Y  

With each contraction the left ventricle ejects a volume of blood 
into the aorta and thence on into the arterial bed. A pressure 
wave moves rapidly through the arterial system where it can be 
felt as the arterial pulse. Blood pressure in the arterial system 
varies with the cardiac cycle, reaching a systolic peak and a dias- 
tolic trough, the levels of which are measured by sphygmomano- 
meter. The difference between systolic and diastolic pressures 
is known as the pulse pressure. 
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As mentioned earlier, analysis of the pulsatile blood flows is 
important in engineering applications as well as in medical appli- 
cations. But the exact solution to this problem has not been avail- 
able so far. This is mainly due to the complex physiological situa- 
tions in the artery. The reason why the problem is so complicated 
may well be understood by examining the real situations of blood 
flow in arteries. 

�9 First, the blood is a non-Newtonian fluid. The constitutive 
equation of blood is more complicated compared with that of the 
Newtonian fluid. As a result, highly nonlinear form is produced 
in the final equations for the blood flow. 

�9 Second, the blood vessel is an elastic tube rather than a static 
fixed pipe. The wall of the blood vessel, which is the boundary 
of the domain where the problem is stated, fluctuates as time 
goes on. In mathematics, the moving boundary problems are much 
more difficult to be treated compared with ~:he fixed boundary 
problems. 

�9 Third, the blood flow is pulsatile. Thus the oscillatory behav- 
ior of the blood flow in an elastic arterial vessel must be consid- 
ered. 

�9 Fourth, the blood flow in the vessel is a combination of tur- 
bulent and laminar flows. In medium- and small-sized vessels 
the flow is laminar, but in a comparatively large-sized vessel, tur- 
bulent flow is observed in some cases. 

�9 Fifth, the straight segments are short in human arterial sys- 
tem. So only the developing flows exist. 

�9 Sixth, the arterial system has almost infinitely many branches 
and there exist bi-, tri-, and multi-furcations in the blood vessel. 

If we considered all of these in one setting of the mathematical 
modelling, the final system of equations would be highly nonlinear 
and extremely coupled. The problem may be too difficult to be 
solved even with the most high-powered computers. Thus, in this 
paper, we simplify the situation as much as possible to make the 
problem tractable without losing the essence. 

M E T H O D  OF A N A L Y S I S  

1. E q u a t i o n s  of  Mot ion  of  the  Blood F l o w  
The physical models and the coordinate systems are shown 

in Fig. 1. As mentioned in Introduction, only the cases of static 
fixed blood vessels are considered in this paper. The equations 
which govern the axisymmetric pulsatile flow are the continuity 
and the Navier-Stokes equations. The followings are assumed to 
simplify the governing equations: 

�9 The blood is a homogeneous incompressible Newtonian 
fluid. 

�9 The density and the viscosity of the fluid are constant. 
�9 The flow is laminar. 

The following characteristic scales are adopted to non-dimen- 
sionalize the governing equations 

1 1 
u~=d .... L = ~ ,  pc=pu~ 2, I~=R, and V c = ~  

where, u=~ is the time-averaged velocity at the center of the en- 
trance plane of the vessel, R the radius of the vessel at the en- 
trance point, and f~ the oscillatory frequency of the imposed pul- 
satile flow times 2ft. Then the dimensionless governing equations 
become 

V-u=0,  (1) 
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Onmpoint stenosed 
static blood vessel OaQi 

z 0~3 
Pulsatile flow 
at the tube inlet 

Periodical[y stenosed 
static blood v~sel 

z 0~2~ 

Fig. !. Physical models and coordinate systems considered in this 
study. 

In (2), two important dimensionless numbers appear. The Strouhal 
number, St= flL/u, is the ratio of unsteady acceleration to the 
steady acceleration and is the measure of the unsteadiness of 
the flow. The Reynolds number, Re= t~L/v, is the ratio of the 
inertial force to the viscous force. In some literatures, these two 
dimensionless parameters are combined to form the pulsatile 
Reynolds number, cF=ReSt(=l/~/v), which stands for the de- 
gree of oscillation of the flow inside the blood vessel. In arteries, 
the value of the Reynolds number ranges from O(10 ~) to O(10 s) 
and that of the Strouhal number from O(10 -~) to O(10~). In the 
present study, the values of Re= 100, 250, and St=0,01, 0.5, 1.0 
are used. 
2. S tream Ftmction-Vort ic i ty  Formulat ion  

In this work we adopt the stream function-vorticity formulation 
by taking advantage of axisymmetry in the problem. The vorticity 
equation is 

St o~ - V•215  co)= _1--- V20) (3) 
0t Re 

where 0) is the vorticity vector defined by 

0)=VXu. (4) 

Since we deal with the axisymmetric blood flows without swirl- 
ing in arteries, only the ea-directional vorticity component re- 
mains, i.e. 

0) = 0)3e3. 

Now, we have to transform Eqs. (3) and (4) into the form appro- 
priate to the axisymmetric general orthogonal coordinate system. 
In an orthogonal ~ -q -0 -coord ina t e  system, the differential dis- 
placement vector is represented as 

dx= h~d~e~ + h~d~% + h~di~ses 

= h~d~e~ + h,d~le, + h~d0eo 

where t k, h~, and h. are the scale factors in the directions of 
~, B, and O, respectively. In axisymmetric problems, hr holds, 
and we define the stream function as 

1 0'~' i ~ 

u~= h.h, O~ ' u~-  h~h. 0 ~ '  

to satisfy the continuity equation automatically. Since only the 
vorticity component oa remains, we set 0)=~o~. Then the govern- 

Table 1. Coefficients of the governing equations 

0 w ~ozW+0zW_ 0W . qz0WW+q3W+q 4 

q 

o~ qo : h~2Re St 

qt: - R e u ~ h J + f  4 h~ 0~ 

q2 

q 4 : 0  

T qo:0 

af ff oh, ql 

i af 1 al-~ 
q2 : f Oq h~ 0 h  

qa:0 
q4 : - 0)h, ~ h, 

ing equations for the vorticity to and the stream function xI' are 
obtained from Eq. (3) and the definition of the vorticity equation 
[Eq. (4)]. The resulting equations are 

Sta0) +__~ 0 /~_~+h~ O {o~ 

(S) 

1 [ 0  ( f  ~ V /  0 1 

where f is the distortion function defined by f= hJh~ (see Batche- 
lor [1967]). 

The above equations are rearranged into the following form 

q aW = F  0zW a:'W OW + 2aW + 3W+ 
+ 0 ~ -  + q ' ~  q 8~  q q" (7) 

where W represents to or ~. The appropriate coefficients q0, q~, 
q~, qs, q4 are written in Table 1. We use the ADI (Alternating 
Direction Implicit) method to obtain the numerical solution of 
the above governing equations. To solve the equations by ADI 
method, we use the central difference approximation for the spa- 
tial derivatives. We then obtain the difference equations for the 
vorticity 

,0) 0) _8co 50) 8o) ,8(o 
q0 , , -UgWy~.=P%~V+~+q~"-~-~ +q2 -~--+q3%)*+q4" (8) 

t/~zat oq- oq og oq 

o~'+1- -~  * 620) * 8~0) ".1 50)* 8 ~  "§ . -  . =  - - + - - +  . + - 
qo 1/2At f2 8~ 2 5.q2 q ~ - ~  q2 8rl 

+ qs"0)" + ~ + q~" (9) 

where At is the time step used in ADI scheme. 
The same scheme does not work for the stream function equa- 

tion because qo is zero. In other words, the stream function equa- 
tion does not have the time derivative term. Therefore the stream 
function equation should be satisfied at any time and the discre- 
tized version of stream function equation 
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Fig. 2. Flow diagram for the numerical scheme. 

6 ~  TM 5:'T" 6~F ' 6'I, '~ + + . 
fz--~---- + -~-q2 + q a ~ -  + q ~ -  ~ q3~V" q 3 = 0  (10) 

should be satisfied for all t = n A t  (n=0,1,2,3,-..). As we can see 
in Table 1, q4 = -r for the stream function equation. Thus, 
for each time-step, we should solve (10) for the given q4 "= -r 2 
hr which is obtained from the n-th time-step value of the vorticity. 
Eq. (10) can be solved in various ways. But an easy way is to 
transform (10) into the fictitious time-dependent problem and 
adopt ADI method to obtain the converged solution 

6~i~ + v2 6~W 
W+'/2-~l/2v = F 6 : ~ +  L/~6~ + 6~I'6n 2 + q l ~  + q z _ . ,  g~ 

+ qa~it~+ in + {]4 n (11) 

~F,+l--~i,~+la _6~ip+v2 6~t,~+1 6T~+la SW +] 
1/2z = P ~  +-g-~n2 + q ~  - + q 2  6n 

+ q~W' + lrz + ~14" (12) 

where v is the iteration number. In (11) and (12), the fictitious 
time-step size �9 plays a role of iteration parameter and is of () 
(10 -~) in the present study. In the present work, the convergence 
criterion for the stream function equation is 

v+I /2  v v~-I v+I /2  9 maxlXI% -T~I, maxlXI% -'~'o 1<10- . 

Thus, the maximum residual of (10) is O(10-7). 
The overall solution algorithm is presented in Fig. 2. As we 

can see in the figure, for each time step increase, i.e. from t =  t 

1.0 , 

0.8 

o.s-~ 
0 . 4 -  

0 . 2 -  

~. 0.0 
-0.2 

-0.4 

-0.6 

-0.8 

-1.O I I 

-1.0 -O.S 0.0 O.S 1.0 1.5 Z.O Z.S 3.0 

dimensionless velocity 

Fig. 3. The velocity profiles of the flow imposed at the tube inlet (re- 
sults of Eq. (13); reference [191). 

to t = t + A t ,  r "*~ is simply obtained by (8) and (9) for the given 
r Once co "+~ is obtained, the stream function equation is solved 
iteratively until the fully converged solution ~F ".1 corresponding 
to r "*1 is obtained. 

For the boundary conditions, we have considered the following 
facts. At the solid surface (alq0, no slip condition holds. At the 
inlet (aflz), the pulsatile velocity profile is imposed. The unsteady 
pulsatile velocity profile imposed at the vessel inlet is given in 
the next subsection. The symmetry condition at the center line 
(0fl~) is due to the axisymmetry of the flow in the channel. For 
the outlet (all4), we have assumed d / d z : 0  for the one-point ste- 
nosed tube, and that all variables at the outlet plane are the same 
as those at the plane one-period ahead of the end point for the 
periodically wavy blood vessel. 
3. P n l s a t i l e  F l o w  at  the  V e s s e l  Inle t  

In the present work, we want to investigate the effects of St 
and Re on the flow fields in the one-point stenosed and the perio- 
dically stenosed blood vessels when a specific pulsatile flow is 
imposed at the inlet. For the pulsatile flow specified at the inlet, 
we have used the velocity components given by 

[ t ) ( l _ rZ)_ r  u =  0 a  2 3 (13) u, = L(1 + e sin 

with a z= 37.75 and e = 0.2 in all computations. The pulsatile veloc- 
ity profiles predicted by (13) with the parameter values are shown 
in Fig. 3. Although the expression is simple, the resulting velocity 
profiles have some essential features of the pulsatile blood flow 
in arteries. Particularly, the back flow for a short time interval 

is noteworthy. 
Here, a comment should be given to the velocity field in (13). 

Originally, the expression in (13) was obtained as an asymptotic 
form of the solution of the problem of uni-directional flow in a 
circular tube with constant radius produced by the time-periodic 
pressure gradient 

_ dP - G 0 ( l + e  sin t). (14) 
dz 

The solution to the problem is given by a complicated expression 
including the Bessel functions. The asymptotic form of the solu- 
tion for the case of a Z = R e S t ~ . l  is in fact given in dimensionless 
form as (see Leal [19]) 

u ,=f( l+e[  sin t ) ( l_ r2 )_e~_(~ ._ r~+ .~)cos  t+O(a  ) ] . a  2 3 P 4 (15) 

Korean J. Ch. E.(Vol. 12, No. 5) 



544 Y. Jeong and I. S. Kang 

(a) 

(b) 

L H!HI I~  - : - i i [ i -  ~ i ~ ' "  

Fig. 4. Orthogonal grid systems inside the blood vessels. 
(a) one-point stenosed blood vessel type 
(b) periodicalIy stenosed blood vessel type 

(a) 

(b) 

(c) 

(d) 

The typical value of a 2 was found to be 37.75 from the physiologi- 
cal data available in references FDinnar, 1981; Flaherty et el., 
1972]. Of course, the asymptotic form in (15) is not a good appro- 
ximation to the solution of uni-directional flow in a constant radius 
tube due to time-periodic pressure gradient for such a large value 
of cff as 37.75. In the present work, however, we do not intend 
to use the solution of the problem of uni-directional pulsatile flow 
in a tube as our inlet condition. Instead, we want to use the expres- 
sion of a specific pulsatile flow which has some essential features 
of the pulsatile blood flow in arteries. As mentioned earlier, the 
expression in (13) with ct2=37.75 and e=0.2 has several nice fea- 
tures even though it does not have meaning as an asymptotic 
solution to the problem of uni-directional pulsatile flow in a con- 
stant radius tube. Thus, we have used the velocity fieht in (13) 
as the inlet condition in all computations. 
4. Or thogona l  Grid  Generat ion 

In order to soh,e the problem numerically, we first have to 
generate a good grid system for the given domain. Our numerical 
scheme is based on the numerically generated boundary-fitted 
orthogonal curvilinear coordinate system. In this paper, the me- 
thod of Oh and Kang [-1994] is adopted. Oh and Kang's method 
is a newly developed numerical scheme for generating an ortho- 
gonal grid in a simply-connected 2D domain. Their method is 
non-iterative and flexible in the adjustment of grid spacing. The 
grid spacing can be controlled mainly by specification of the boun- 
dary correspondence up to on three sides of the boundary. 

We generated the orthogonal grid systems for the one-point 
stenosed vessel as well as the periodically stenosed blood vessel  
The results are presented in Fig. 4. The equation for the top 
side boundary (0A'I0 is given as 

y=  1+ 0.25[-cos{n(x- 1.5)}- 1] 0.75KxK1.5 
y = l  0Kx<0.75, 1.5<xK8 

for the one-point stenosed blood vessel and 

y=0.8+0.2  cos(nx) 0Kx~g4 

for the periodically stenosed blood vessel. The grid systems were 
obtained by specifying the boundary correspondence on three 
sides as (x = ~, y=  given function for each geometry) on 012~, (x= 
0, y=rl)  on Of'12, and (x=~, y=O) on 0123. 

R E S U L T S  AND DISCUSSIONS 

1. One-point  S tenosed  Blood Vesse l  
We have solved the equations for both the stream function and 

the vorticity for the one-point stenosed solid blood vessel. For 

(e) 

(0 

'.. --. - ~ 

(g) 

(h) 

Fig. 5. Streamlines in the one-point stenosed blood vessel for the case 
of Re=250, S t = l .  
(a) t=n/2;  (b) t=n;  (c) t=3rr/2; (d) t=2m (e) t=2~+rff2; 

(f) t=2n+n;  (g) t=2n+3n/2; (h) t=4n. 

the initial condition, it is assumed that there is no flow initially 
inside the vessel. As already described in Fig. 1, the physical 
model of the blood vessel is 75% stenosed on the basis of the 
cross sectional area. The pulsatile flow imposed at the inlet is 
accelerated in the forward direction for the time interval 0<t<n, 
but the flow is decelerated for n<t<2n. The acceleration and 
deceleration are repeated as shown earlier in Fig. 3. 

For the case of Re=250, S t = l ,  the snapshots of streamline 
distribution inside the blood vessel are shown for several time 
steps in Fig. 5. At t=n/2, the vortex seed is formed at the post- 
stenosed part of the blood vessel. As time goes on, the size of 
the vortex grows larger and moves downward to the end of the 
blood vessel. At t =  n, the acceleration phase ends. Although the 
inlet flow is decelerated after t=n ,  the vortex formed during the 
acceleration period does not disappear and moves to the down- 
stream of the flow. At t--2r~, one period of flow oscillation at 
the vessel inlet is completed. During the next period, the vortex 
formed during the first period survives and moves to the down- 
stream.. The vortices affect the vessel surface in the form of resid- 
ual shear stress. The flow fields in the next period near the 
stenosis are quite similar to those of the previous period. 

We have plotted the dimensionless wall vorticity as function 
of z in Fig. 6. As the dimensionless wall vorticity is directly related 
to the dimensional shear stress by ~--- -(puJlc)r we can estimate 
the shear stress distribution from the vorticity plot along the 
blood vessel wall. The shear stress oscillates with a large ampli- 
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Fig. 6. Distribution of dimensionless vorticity along the wall of the 
one-point stenosed blood vessel (Re=250, St=  !). 
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Fig. 7. Dimensionless pressure distribution along the wall of the one- 
point stenosed blood vessel (Re=250, St=  1). 

(a) 

(b) 

(c) 

l 

(d) 

(e) 

(f) 

(g) 

(h) 

Fig. 8. Streamlines in the one-point stenosed blood vessel for the case 
of Re=250, St:O.01. 
(a) t=n/4; (b) t=n/2; (c) t :3n /4 ;  (d) t=n;  (e) t=5n/4; (f) 

t=3n/2; (g) t=7n/4; (h) t=2n. 

tude near the stenosis, and there also exists the residual shear 
stress due to the vortex formed one-period ago. The dimension- 
less pressure distribution along the vessel is presented in Fig. 
7 (The computation of pressure along the wall has been perform- 
ed by the method in Kang and Leal [1987"]). The pressure dis- 
tribution along the blood vessel wall oscillates as lhe imposed 
flow at inlet is accelerated or decelerated. 

In the case of Re=250, St=0.01, the flow characteristics are 
quite different from those of the case of Re=250, S t = l  as can 
be seen from the streamlines in Fig. 8. As mentioned earlier, 
the Strouhal number is the measure of unsteadiness of the flow 
field. In the case of Re=250, St=0.01, the flow field at each time 
step is very similar to that of the steady state flow field that 
would be obtained when the inlet condition is fixed with the im- 
posed flow at that time. This is due to the small Strouhal number 
under which the flow field behaves in a quasi-steady state man- 
ner. This fact can also be verified from the governing equation 
(2). Under this condition, a large vortex oscillates in the broad 
range of the post stenotic region and for the most part of one 
period there exists a large stagnation flow behind the stenosis. 
The large stagnation flow has some physiological meaning. The 
probability of attaching platelets to the surface of blood vessel 
may be higher in the stagnant region of the blood vessel compared 
with other vessel segment. If this physiological phenomenon hap- 
pens, the arterial diseases of stenosis or atherosclerasis become 
worse and serious damage to the vessel wall may occur. Tbe 
stenosis will progress further and consequently artificial arterial 
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Fig. 9. Distribution of dimensionless vortieity along the wall of the 
one-point stenosed blood vessel (Re=250, St=0.01). 

segment must be prosthesed parallel to the diseased blood vessel 
[-Savvides and Gerrad, 1984]. 

Fig. 9 shows the distribution of the dimensionless shear stress 
along the blood vessel wall. Large values of oscillatory shear 
stress are exerted at the stenosed part of the vessel but there 
does not exist any residual shear stress far away from the stenotic 
point of the blood vessel. This is due to the fact that there is 
no vortex present in that part of the blood vessel. If we look 
at the pressure variation along the blood vessel shown in Fig. 
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Fig. 10. Dimensionless pressure distribution along the wall of the one- 
point stenosed blood vessel (Re=250, St=0.01).  

Table 2. Numericall~ calculated shear stress under various flow con- 
ditions for each blood vessel type 

Model Shear stress (dyne/cm z) 
Normal blood vessel 
One-point 

stenosed 
blood vessel 

Periodically 
stenosed 
blood vessel 

2 3 - - 1 2  (Re=250, S t = l )  
270 - -105  (Re=250, S t = I )  
2 7 0 - - 8 2  (Re=250, St=0.5) 
2 7 0 - -  12 (Re=250, St=0.01) 
70 - - 14 (Re = 100, St = 1) 
7 0 - - 7  (Re= 100, St=0.5) 
149 - -  67 (Re = 250, St = 1) 

1 4 6 - - 3 0  (Re=250, St=0.5) 
146- -21  (Re=250, St=0.01) 
39 - - 9 (Re = 100, St = 1) 
3 9 - - 4  (Re=100, St=0.5) 

10, the profiles are. nearly the same as that of steady state case 
at each time. In other words, the profiles show the characteristics 

of the quasi-steady state. 

It is time to investigate the physiological effects of shear stress 
on the endothelial cells of the blood vessels. As mentioned earlier, 
the dimensional shear stress @) can be computed by using the 
numerical results of the dimensionless wall vorticity (to) by the 
relation ~ = -Qaudl.)to. As an example, we consider a blood vessel 

of diameter 1 cm (i.e. L=rad iu s=0 .5  cm) and the viscosity of 
the blood is assumed to be 3.5 cp (=0.035 g/cm/s). Then from 
the definition of the Reynolds number  u~ is computed. ]n order 
to see the effect of the stenosis, the numerical computations have 
been performed for both the straight blood vessel and the 75% 
stenosed vessel. For the straight normal blood vessel, the shear 
stress ranges from 23 dyne/cm 2 to - 1 2  dyne/cm 2 in ~he case 
of Re=250,  S t = l .  But for the model of this study, the shear 
stress value is increased about ten times to the value 2 7 0 - - 1 0 5  
for the same condition and to the 70 - -  14 for the case of Re = 100, 

S t =  1. At the peak stenosis point the shear stress value oscillates 
in the range 0-270 dyne/cm 2 for Re=250,  S t = l ,  and 0-70 for 
Re=100,  S t = l .  The numerical values for the other cases are 
presented in Table 2. This amount of shear stress can cause phy- 
sical damage to the arterial wall. Daly [-1976] suggested that the 
endothelial surface of the canine thoracic aorta exposed on the 
time-averaged wall shear stress of 380 dyne/cm 2 (+_ 85 dyne/cm'  
standard deviation) for approximately 1 hr can be markedly dete- 
riorated. Based on this data we can expect the physical damage 
of the endothelial surface due to the flow field when there is 
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Fig. 11. Streamlines in the one-point stenosed blood vessel for the 
case of Re=250,  St=O.5. 
(a) t=n /4 ;  (b) t=n /2 ;  (c) t=3n/4;  (d) t = n ;  (e) t=5n/4;  (f) 
t=3n/2;  (g) t=7n/4;  (h) t=2n.  
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Fig. 12 Distribution of dimensionless vorticity along the wall of the 
one-point stenosed blood vessel (Re=250, St=0.5).  

a deeply developed stenosis. 
Now we discuss the effects of the Strouhal number  on the flow 

field characteristics. In the case of a high Strouhal number, un- 
steadiness of the flow field is prominent. On the other hand, in 
the low Strouhal number  case, the nature of flow field is in a 
more or less quasi-steady state. The flow with a high Strouhal 
number  of O(1) is dominated by the effect of unsteady accelera- 
tion. In this case we have seen from numerical solutions that 
vortices exist and move to downstream even for a deceleration 
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phase. The inertial forces cannot erase all the vortices power in 
the high Strouhal number  cases. On the other hand, when the 
Strouhal number  is as small as O(10-~), an almost quasi-steady 
flow exists. Between these orders there is an intermediate Strou- 
hal number  at which the flow changes its characleristics from 
a quasi-steady fashion to a dynamic fashion. In Figs. 11 and 12, 
the results are shown for the case ol $t=0.5.  The results are 
almost the same as those of the S1 = 1 case. Although results are 
not given in this paper, the numerical solutions for St=0.1  case 
show that the quasi-steady state nature dominates. In the case 
of Re=100,  the general behavior is almost the same as that of 
the Re=250  case except that the inertial force is weaker com- 
pared with the high Reynolds number  case. 
2. Per iodica l ly  S t e n o s e d  B l o o d  V e s s e l  

The physical model adopted in this work was given earlier in 
Fig. 1. The blood vessel is 60% periodically stenosed on the cross- 
sectional area basis. It is a kind of wavy channel thal was adopted 
by Sobey [1980] or Nishimura 1-1989]. But the major difference 
is that our model is rather longer. Sobey considered only one- 
furrowed channel and Nishimura two-furrowed channel. Our mod- 
el is a four period furrowed channel. Sobey used the periodic 
boundary conditions to solve the problem, hut in our case, we 
ha'~e solved the problem for the whole system hy using the bound- 

ary conditions discussed earlier. 
For the case of Re=250,  S t =  1, we have calculated the flow 

field inside the wavy vessel as a function of time starting from 
no flow situation. The streamlines at specified times are shown 
in Fig. 13. As the flow is accelerated, the separation occurs inside 

the furrowed channel. Initially the flow is subject to a pressure 
gradient in the direction of the flow because of the accelerati,~n. 
This causes the fluid to stream through the channel without sepa- 

ration. The channel geometry will impose a pressure gradient op- 
posing the direction of flow in the region of increasing channel 
width. The magnitude ol this adverse pressure gradient will in- 
creaseas the flow magnitude increases while the pressure gra- 
dient driving the flow will decrease as the time of peak flow is 
approached. Eventually the adverse pressure gradient will exceed 
the pressure gradient driving the flow and shortly after this the 
flow may separate. Once separation occurs, a vortex forms and 
grows rapidly [Fig  13(b)] and there may be a considerable regmn 
of recirculating flow. 

In the deceleration phase, the vortices behave in a remarkable 
manner. In steady state flow, the vortices decrease in size as 
the flow magnitude decreases. However, in the case of pulsatile 
flow, the vortices expand and gradually bulge into the main 
stream I-Fig. 13(c)]. Even though the flux of fluid through the 
channel vanishes, the vortices remain spinning in the fluid and 
they effectively occupy the entire channel [Fig. 13(d)~l. This behav- 
ior is possible because, no matter how the Reynolds numher  
may be large, the continuity of stress of a viscous fluid ensures 
that moving fluid entrains stationary fluid before the whole fluid 
would come to rest. 

To see the behavior of vortices more closely we took the snap- 
shots with the time interval of n/4. In Fig. 13(el, we can see that 
the size of vortex decreases when there is large inertial force 
that exceeds the vortex power. As the inertial force ine rea~s  
further all the vortices inside the tube are diminished and disap- 
peared completely [Fig. 13(t)3. At the time of 2n+3n/4, the new 
vortices are formed inside the furrow due to the adverse pressure 
created by geometry [-Fig. 13(g)]. As the flow is further acceler- 
ated, the vortices grow up and move in the direction of flow inside 
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Fig. 13. Streamlines in the periodically stenosed blood vessel for the 
case of Re=250,  S t = l .  
(a) t=n /2 ;  (b) t = n ;  (c) t=3n/2;  (d) t : :2n;  (el t=2n+n/4n; 
(flt = 2 n + n / 2 :  (g) t = 2 n +  3n/4: (h) t=2r r+  n; (i) t = 2 n +  5n/4; 
(j) ~=2n+3n/2;  (k) t = 2 n + 7 n / 4 ,  (l) t:=4r~. 

the furrow. In the deceleration phase ol the inlet flow, the vortices 

grow up in the direction of centerline of the tube. As the flow 
is more decelerated, the vortices grow further and are about to 
be ejected to the core of the tube [-Fig. 130)-I. / l i ter  the vortex 
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Fig. 14. Distribution of dimensionless vorticity along the wall of the 
periodically stenosed blood vessel (Re=250, S t = l ) .  
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Fig. 15. Dimensionless pressure distribution along the wall of the pe- 
riodically stenosed blood vessel (Re=250, S t = l ) .  

ejection occurs [Fig. 13(k)], the vortex is entrained at the core 
region between the back flow near the wall surface [Fig. 13(I)]. 
This is the so-called vortex entrainment phenomenon. The pro- 
cess of vortex ejection and entrainment occurs very rapidly at 
the time of reversal fluid flux. 

The process of vortex formation and ejection is a powerful sour- 
ce of convective mixing. A quite striking feature of this flow field 
is the growth of vortex size during the deceleration period. This 
phenomenon of existing vortices inside the tube until the inertial 
force exceeds the vortex power is due to the so-called steady 
streaming effect. The steady streaming effect is clearly confirmed 
in our numerical studies. This topic is worthy of further study 
since some sophisticated equipments for enhancing the heat and 
mass transport may be designed by taking advantage of the phe- 
nomenon mentioned above [-Dragon and Grotberg, 1991]. 

The wall vorticity along the blood vessel is presented in Fig. 
14. Large oscillatory shear stresses are exerted to the wall surface 
near the stenosed point of the blood vessel. In Fig. 15, the pres- 
sure variation along the vessel wall is presented. The pressure 
at the wall changes periodically according to the oscillating flow 
at the inlet. 

For the case of Re=250, St=0.01, the flow fields at various 
times are presented in Fig. 16, and the wall vorticity along the 
blood vessel in Fig. 17. As we can see in the figures, the flow 
fields are nearly the same as the corresponding steady state solu- 
tions. Inside the channel, stagnation flow region is formed. Based 
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Fig. 16. Streamlines in the periodically stenosed blood vessel for the 
case of Re=250, St=0.01. 
(a) t=n/4; (b) t=n/2;  (c) t=3n/4; (d) t = m  (e) t=SM4; (I) 
t=3n/2; (g) t=7n/4; (h) t=2n. 

on these results we can infer that the arterial disease becomes 
worse once there exists a periodic stenosis along the blood vessel 
because platelet attachment progresses on the vessel segment 
between the stenosis points. 

Let us now see the increment of shear stress when there is 
a 64% stenosis compared to that of normal straight arterial seg- 
ment. As we can see in Table 2, the numerical value of shear 
stress is increased about 7 times for the 64% periodically formed 
stenosis. This amount of shear stress may deteriorate the endo- 
thelial surface as we can see in Daly [-1976]. 

In the Strouhal number range of O(10-1), the flow field shows 
somewhat intermediate behavior between the dynamic and the 
quasi-steady states as shown in Figs. 18 and 19. As the Strouhal 
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Fig. 17. Distribution of dimensionless vorticity along the wall of the 
periodically stenosed blood vessel (Re=250, St=0.01). 
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Fig. 19. Distribution of dimensionless voriidty along the wall of the 
periodically stenosed blood vessel (Re=:250, St=0.5). 

( a )  

('0) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Fig. 18. Streamlines in the periodically stenosed blood vessel for the 
case of Re=250,  St=0.5 .  
(a) t=n/4;  (b) t=n/2; (c) t=3n/4; (d) t=n;  (el t=5n/4; (0 
t=3n/2; (g) t=7n/4; (h) t=2n. 

number is closer to O(1) the unsteady acceleration effect domi- 
nates the flow fields, and below the order of O(10 1) the flow 
shows the quasi-steady behavior. 

CONCLUSIONS 

In this work, several physiological phenomena due to the pulsa- 
tile blood flow in fixed but stenosed blood vessels have been 
studied numerically. The numerical scheme used is the finite dif- 
ference method with orthogonal grid generation. For convergence 
scheme of the numerical solutions, ADI scheme has been used. 
Several important results of the unsteady flow fields inside the 
blood vessel have been obtained. Based on the results, we expect 
that the pulsatile blood flow has the following physiological effects 
in the blood vessel proximal to the stenosis. 

�9 High shear stress is exerted on the blood vessel wall near 
the stenosed point due to the fast flow, and serious physical dam- 
age may occur due to the exerted high shear stress. 

�9 When the Strouhal number is small, there exists a large recir- 
culating flow after the stenosis. The size of the circulating flow 
oscillates as the imposed flow at the inlet oscillates. The proba- 
bility of platelet attachment is expected to be higher in the circu- 
lating flow region than at other part of the blood vessel. 

�9 When the Strouhal number is 0(0.5) or higher, the residual 
shear stress due to the vortex remained in the post-stenotic re- 
gion of the blood vessel affects the vessel wall in the form of 
physical stress. 

Another aspect we have confirmed is the steady streaming ef- 
fect inside the wavy vessel when there is a pulsatile blood flow 
at the tube inlet. The process of vortex formation-~movement 

-~growth-~ejection-~entrainment is though~ to be a powerful 
source of convective mixing inside the tube without making the 
flow turbulent. This is an effective way of increasing the heat 
and mass transfer rate inside the tube. This mechanism may also 
be applied to enhance the mass transfer rate in some crucial parts 
of artificial kidney and heart systems. 
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